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CONTRIBUTIONS TO RADAR TRACKING ERRORS FOR A TWO-POINT
TARGET CAUSED BY GEOMETRIC APPROXIMATIONS

1. INTRODUCTION

In tracking an extended radar target, an accurate measurement of the target’s position is
essential. A target is extended [1, p.1] if “its size is sufficient to cause glint errors which exceed
the other errors of the system.” However the composite signal at the receiver induced by the
scattering elements comprising such targets can cause substantial measurement errors of position
[1,2,3]. Therefore accurate characterizations of the measured (apparent) range and angular errors
of extended targets are important. In Ref. 1 [Ch. 1], these errors are quantified for a two-point
target, but an error is introduced by approximating the range to the centroid of the two-point
target. Since the accuracy of the characterization has practical significance for radar systems in
terms of observed glint errors, this issue is investigated for the ideal situation of a two-point target
in a two-dimensional geometry to gain further insight into this problem. Exact expressions of the
range and angular errors and an alternate set of approximations to them are derived. Both sets
of approximations are compared to the exact errors. These errors depend on the phase (3's) of
the composite s:gnal, on the differences between the distances from the radar to the two scattering
centers and *iie centroid of the target, and on the relative size of the amplitudes of the individual
scattered fields from each center (Ey/E,).

The alternate approximations are obtained first by expanding appropriate parts of the errors
in infinite series and then by truncating the series. The truncated series are polynomials in the
ratio of the distance separating the two scattering elements to the actual distance from a radar to
the centroid of the scatterers. The differences between the cxact errors and the two distinct sets of
approximations to them are examiued as a function of this ratio. Advantages and shortcomings of
each set of approximations are identified. The exact expression for the angular error is shown to
reduce both to the first-order approximation and to the expression of Ref. 1 [Ch. 1], when certain
approximations are made; however, such is not the case for the transverse and radial range errors.

First the problem is defined, the geometry is specified, and exact expressions for the range
and angular errors are derived. This is followed by a discussion of the approximations to the errors
and by an analysis of the impact of the approximations relative to the exact expressions for two
examples. In particular, limits of the ratios of the different range errors are analyzed in detail.
An X-band system (10 GIlz) and a large aircraft, which is characterized by a separation of 50 m
between the scattering centers, are assumed in both examples. The examples represent an aircraft
that is in its landing approach or at a range of roughly 200 nmi.

2. DEFINITIONS

To have consistent terminology, the following definitions are extracted from Ref. 1 and sum
marized. In keeping with the definition of an extended target, partition the target's surface by
subdividing the associated volume with a fine, three-dimensional grid. When the radar observes
the target, cach small surface clement contributes to the total received signal. Those clements tha:
produce strong scatter are called specular points [4]. Usually a target has many specular points. \n
individual point contributes randomly to the echo signal’s amplitude and to the apparent position
of the extended target, which varies according to the relative motion between the physical target
and the radar. Conscquently, “a specular point is not any particular geometric point on the surface
of the extended target;” ratler it “represents a combination of scattering elements which return a
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Gaussian signal. Other specular points are similarly composed, and their signals are statistically
independent [5,6).”

“Ience, a mathematical model of the extended target must meet two requirements: () it
must take into account the physical processes which affect radar tracking of the target’s extended
features, and (b) it must yield results which predict accurately the practical performance of the
tracking radar. One such model, the n-point model [7], represents the target as the sum of a
large number of random, independent specular points, filling the space occupied by the target.”
An n-point target model consists of n specular points that can be either independent isotropically
reflecting point targets, independent complex reflecting objects, a combination of the two, or any
of the preceding where a statistical correlation exists between the scattering centers.

“The number of specular points used to represent the target...may be reduced to a small value
for practical purposes, and in some cases the two-point model is used” [2,8,9). This analysis is
undertaken for a two-point target, but may have implications for a more complicated extended
target.

3. EXACT CHARACTERIZATION OF RANGE AND ANGULAR ERRORS

Initially the bistatic case is treated, from which the more prevalent, monostatic situation is
obtained as a special case. These geometries are depicted in Figs. 1 and 2. The formulation of
Ref. 10 is followed. In particular, the origin of the inertial frame is chosen to be the location of
the transmitter. In Fig. 1, P, and P, are the positions of the scattering centers at a given instant
of time, O’ is the midpoint of the line segment Py P, whose length is I, P, is the observation point
(location of the receiver) of the scattered ficld, To; and To, are the position vectors from the origin
to points P; and P», respectively, and T; and T» are the vectors from P to P, and P to P,
respectively. For the sake of argument, assume the magnitudes of T1 and Top; are respectively less
than the magnitudes of T, and Top2; that is, 7 < 72 and rg; < 7o2.

The scattered electric field at P, due to the ith specular point has the form E, cos[w(t —t,)+ 6,)
for i € {1,2}, where w is the angular carrier frequency, 6, is the phase induced by the ith scatterer, ¢,
is the time delay at P, over the path from O to P, to P,, and E, is the amplitude of the zth scattering
center and is proportivnal to the square root of its effective radar cross-section. This interpretation
of 6, agrees with that of Ref. 11 [Eq. (71)}. Under the assumption that the polarizations from P
and P> are identical, the composite signal received at point P, and time ¢ is

es(t) = el(t) + ea(t) = Ey cosfwe(t — 1)) + &1} + Ea cosfw(t — L2) + 82] = Eg cos(wt — ¥s), (1)

for the individual fields ¢; and ¢2. The composite phase and amplitude are ¢*s and E's, which after
some algebra can be written as

\/Bi)' 4 E'_,z + ?.ElEo_COS((sl -6 + 1,,)), for I; 95 Es
Es = i (2(a))
2[5 [l + cos(6; - 82 + 11:)], for By = E», and
Ps =B+, (2(b))

where

A >
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b=w(ts ~ 1), (3(a))
B=w(ty +1,)/2, (3(6))
L= (r; + 1rg5) /e,

(3(c))
_ Eusin (6x+»;l)+£zs;n (52-_;'

E; cos (6,-{-2)-;-82 cos (62—5’-
tand = 2 :

—tan (ﬁ’-}ﬁ) , for By = B,

and cis the speed of light in free space.

(3(d))

1
r

Fig. | - Bistatic geometry. where Fig. 2 = Monostatic geomen, where
the observation point Py and the the observition poing Py and the
transmitter O are distinet sauree O are collocared
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The expressions for £q.(2) are obtained by substituting the identities, §; ~wt; = 6 - - 1/2
and &, ~wt; = 6, — f+14/2, into Eq.(1) and simplifying the resulting equations. Clearly ¢'s depends
on w, Ty, T2, To1, To2, 01, and &2. To simplify subsequent equations, the following definitions of
real-valued scalars are used

_T1t7 __ 101+ To2
Ta - 2 ? Tao - _2—,

dr=r9—1, &bro=702 —101, D =8r+érp. (4)
Rewriting 8 and 1 in this nomenclature leads to
B = “_c’(ra +7e0) and Y= %(61‘ + 870). (5)

As a result of various errors, the location of the target measured by a trucking radar is not
necessarily any of the points Py, P, or C. Let the location of the measured ceutroid be denoted
P4c, with associated vectors p,, and 7,,o and magnitudes p,, and pm,o from Pyc to P, and O to
Pyc, respectively (Fig. 1). According to propagation theory [12, pp. 224-227] and experimental
measurements [3], the apparent center Py is determined from the phase s of the composite
signal; that is, the direction of 5, is the direction of the gradient of ¢¥'s evaluated at P,, while its
magnitude is specified by

_c 34’5'
Pm =500 |p,
where the partial derivative is the group time delay. Exact expressions for these two quantities are
now derived.
First observe that

ops [ 1(ratra) + 32, for B # s

- = (6)
Qw %(ra + Tao), for By = PB».

When E, and ¢, are constant for the range of frequencies under consideration, this equation sim-
plifies to

(r"+r'f) D E}-E}
% = ¢ + ¢ E{+EZ¥2E: 2 cols(6:-61—’¢")’ for By # E» (7)
dw ( 2
TatTa0
- ’ for El = Bo_.

Since this analysis takes place in the plane determined by the points O, Py, and P, the gradient
depends on two spatial variables. A natural choice is the set of polar coordinates (r,8) relative to
the uv-coordinate frame, whose origin is located at O’ with the positive u-axis perpendicular to
iP5 and the positive z-axis coinciding with 0" (Fig. 1). Therefore the gradient Vs evaluated
at P, is

y _|9¥s. | 10Ys.
vlbSIP., - [—('F-e’ + 90 ¢ ]P ! ()

where &, and &; are the polar unit vectors. Let (rg,0p) and (r,0) represent the polar coordinates
of the points O and I, respectively, and let T and T be the associated position vectors from O’
with magnitudes ry and 7.

4
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Before calculating Vs, the functional relationships between r,, 740, 67, 679 and 7, 8, 7o, o
are determined. Assuming r, and ro, are greater than [/2 and applying basic trigonometry leads to

To2 = 1‘8 + rolsinfy + 12 /4, (9(b))
= /72 —rlsin0 + I2/4, (9(c))
T = /72 + rsind + [2/4, (9(d))

which express the distances 71, 792, 71, 2 in terms of the polar variables r, 8, 79, 65. Substitute
these expressions into Eq. (4) to get

Tap = %(\/1'0 —rolsinfy + 124 + \/73 + rolsinf + 12 /4 ): (10(a))
Tg = %(\/ 2 - T[S“lo + l" li + JTz + Tlslna +l /4) (lo(b))
§ro = \/r;-; +rolsinfp + 24 — \/rg — 1ol sinfp + I2/4, (10(c))
§r= /2 +7risinl + [2/4 - \/Tz —7rlsinf + 12/4- (10(‘1))

Replace the appropriate quantities of Eq. (2(b)) by the preceding expressions to obtain

in sin|§a— 22 (8r46r
%(Ta +1'no) +arctan{ Eysi [61+ (6r+6ro)]+D' [6- sz (6r+d o)] }’ for Ey # Es

Eq cos |14 £ (8r+6ro)| + E2 cos 82~ £ (8r+670)]
Ps=

=

w (ra + Tno) + arctand — SnlBrt g Erssr)] +sin [6:~ 2 (57+6r0)] for E, = En.
€ cos |81+ 3= (874 870) | +cos [6;-—._,‘(6r+6ro)[ -
(11)

As a brief aside, note that s clearly depends on the carrier w, Eyf/FEa, r; + 2, and 7y = r». Now

taking the partial derisatives indicated in Eq. (8) and making some minor algebraic adjustments
yield

i)__dg _w 2r +1Isind + 2r = lsind

or lp, VR trlsind + B4 /12 —rlsin0+ P[4
2r + Isind 2r —Isind

v trlsin0+ B4 \fr* —rlsin@+ 2[4

E} - E? }
12(a
E, + B3 + 2B B, cos[éo - & —(6r+ 6ro).a/c] ) (12(e))
1dhs) _w lcos® lcosO
rorlp, " e Vet rlsing + Bf4 fr* = rlsin0 + P[4

+ Lcosl) + lcos®
Vi +rlsind + 2[4 \'/r2 —rlsind+ 2[4

12(b
[J‘; + D-) + 2’11 ﬁCOS{6‘7 — 6[ - (61‘ + 61‘0)“1/(:] } ( ( ))

B
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when E) # E,. If By = E,, the expressions for the partial derivatives are obtained from Egs.
(12(a)) and (12(b)) by omitting the product terms so that only the first two terms remain for each
partial.

The angular error between the measured (apparent) and actual locations of the target is the
angle from €&, to Vif's in the counterclockwise direction. In the geometry of Fig. 1, ¢ is an acute,
negative angle and

109s /3vs

tan¢= ;TH—/ or . (13)

No standard definition of a formula to represent the range error currently exists. owever two
natural candidates are the radial range error R, and the magnitude p of the vector error (F - 5, ),
which are given by

Re=1—pm=[f|-|pn| and p=|p]=[F-7y,l (14)
A third choice is the range error projected along the actual direction
Ar = r — |Projection of 5,,, onto F| = 1 — p, cos ¢. (15)

It is clear from the geometry of Fig. 1 that relationships among these errors exist. If a fourth error
(AL = pmsing), the error in the direction transverse to T, is defined, these relationships may be
quantified. In particular, Ar and AL are the orthogonal components of 5. Since

Pt = (Ar) + (ALY = R: + drpp sin®(4/2), (16)

p is clearly the largest error. Observe that

2 _ 2
roTetro _D______ E-Ey , for By # E,
Rc - = = E;+E5+2b|Egcos[6;—6, —2w6r/c] (17)
7 — Iniran for By = B»

is the only error independent of ¢ and that p and |[Ar| approach |R.] in the limit as ¢ approaches
Zero.

In analyzing expressions for the errors, it is useful to introduce three new parameters,

l l E
To = —, T=E o = Tli (18)
To r 2

the first two of which are numbers between zero and one for this application. Although the equations
for the errors of the bistatic case can be reformulated in terms of 0. 7, and zp, the monostatic
case is treated instead because it has greater applicability to radar scenarios, not to mention that
the calculations are much less cumbersome. Results for monostatic tracking radars are obtained
by setting

FT=Tgy, Tq=Tan: 0= 00: &, = éror és = éau or = 67’0, é = éO: T = 70 (19)
and the corresponding geometry (Fig. 2) is obtained by letting the point P, coincide with O.

6
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Therefore in the monostatic case for zp # 1, the expressions for s and the various errors

become
2
tan d '7(:050{ or  2r, 1-25 }

2 T Tz§+1+2zocos[62 -6 —2(06r/c]
)2 oy . bT v v, .2r,
- {T - 5511’107 + (T + 55m07)
x L= 2% , (20(a))
75 + 1+ 2z9 cos[b2 — 6y — 2wér/c]
Ro=r—1y~6r 1—23 (20(0))
€ N z3 + 1 4 229 cos[62 — 6; — 2wér/c]’
1-23
Ar=r- a = s 2
r=r cos¢{r + 6T26 F 1+ 2 cos[s — b= 2sbr]d] } (20(c))
AL =sing r, + 67 1-z ) (20(d))
23 + 1+ 220 cos[b2 — & — 2wir/c]

(20(e))

s = 2&::,, + arctau{-—- sin[61 +w6r/c] + 2 sin[ﬁg - w6r/c] },

cos|[8y + wdr/c] + zo cos[62 — wér/c]

while for zp = 1

cosf ] or 2r, . 67
tang = Y 5 {—? + (T - %sm 07) }, (21(a))
Re=1 -1, (Zl(b))
Ar=r1-r,c059, (21(c))
AL =r1,sin g, (21(d))
2wry,  6; + 62
he = - ) .
po= 20e Bt (21(e)

Clearly Eqs. (21) are directly obtainable from Eqs. (20) by letting = be unity; however, one
would not arrive at Eqs. (21) if the argument of the cosine, 8 - § - 2wér/c, is set equal to zero
before letting zp be zero. When calculating such limits, they must be taken in the proper order. In
this problem, the limit with respect to zp must be evaluated first. In fact, the double limit obtained
by letting &> - & - 2wér/c approach zcro, followed by =g approaching one, does not even exist.

Even though it is assumed that ry < r2 and roy < ro2 (hence 8,0y € [7/2,7)) in the preceding
arguments and figures, the results thus far are true for all 0,6, € [0,27).

4. APPROXIMATIONS TO THE EXACT EXPRESSIONS

The exact expressions of the errors given by Eqs.(20) depend on the parameter 5, which lies in
the open interval (0, 1). In particular, an implicit dependence occurs in §r and r4 or, equivalently,
in the individual ranges ry and r;. Tt is further assumed that 9 is small cnough to guarantee the
convergence of the binomial series representations of r; and r2. Consequently,

2 3
= r{l - %sin 0+ jg cos® 0 + %6 sinf cos® 0 + 0(‘)'4)}, (22(a))

- 2 3
Ty = r{ 1+ <sind+ % cos> 0 — :17—6 sinfcos® 0 + 0(7")}, (22(b))

2
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which imply

or . 7 . 2 4
—=7 sinf — g sin 8 cos® 0+ O(7"), (23(a))
Ta 72 2 4
- =1+ _é- cos® 6 + O(’T ): (23(b))
3
P = -&%{7sin0— %—sinﬂc0320+0(74)}. (23(c))

The O-notation means terms of that order and higher.

The preceding three expressions can be approximated by truncating the appropriate infinite
series. The least accurate approximations are obtained by eliminating all terms with 4 raised to a
power greater than or equal to one or two, which are respectively called the zeroth- and first-order
approximations and are designated by zero and one subscripts. For example,

7 cos 8 1- 23
t = 24
2nér 2 zZ+1+2zcos[6; — & — (2wyr/c)sind]’ (24(e))
1-22
fier = —lsing ° ; 24(b
«t s 22+ 1422 605[62 — 6; — (2wyr/c)sin 0] ; (24(2))
Arp=1—~1cosPrq 1 +vsind 1-2 (21(c))
: zg + 1+ 2z9 cos[62 — 61 — (2wyr/c)sing] |’

ALy =7sing, {l +7sinf— 1% (24(d))

zg + 1+ 279 cos[d2 ~ &; — (2wyr/c)sin 0] }

Equations (24) are valid for zp # 1. When z = 1, tan¢; and R, are zero, Ary is 71 — cos ),
and AL is rsingy.
Analogous expressions for Eqs. (24) from Ref. 1 {Eqs. (1.11) and (1.14)] are given by

lcosq 1-22 =
t( _ - 2.
an Gob 2ry z3 + 14 2z cos|(2wlfc)sing]’ (25(a))
Ising 1-z3 i
Arey = — , 25(b
Tob 2 z2 41+ 2z cos|(2wlfc)sinq] (25(5))
1- zg

A = —{ cos .
Lob €8 ng + 1 + 239 cos[(2wl/c)sin q]

(25(c))
To account for the apparent sign errors in the formulac for ¢ and & of Ref. 1 [pp. 7,9], minus signs
are inserted following the equal signs in Eqs. (25). A similar sign difference is also found in Ref.
10 [p. 1822} in the equivalent expression denoted 13, on which the result of Ref. 1 is based.

First note that the parameter “r” of Rel. 1 is an approximation to the actual range r. In
particular, it is r,, the average of r; and r2. To make comparisons between the results of Ref.
1 and the exact and approximate expressions of this report, their “r" has been replaced with rg.
Conscquently, the center of their moving coordinate axis is situated at Ogp at a distance rq from
0 (Fig. 2).

Secondly, the directed angle q is measured from the line segment 070 to the perpendicular
bisector of 7% 12 on the O side of T} 2. It is not clear from Refs.1 and 10 how g is defined. So the

S
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aforementioned definition is selected. For the geometry of Fig. 2, gis related to 8 by 8 + ¢ = 7. In
fact, the relationship between 6 and g for arbitrary configurations is given by

0, for0<0<=/2
G+qg=<{m, forxf2<0<3=[2 (26)
1 2z, for3m[2<0<2x.

The authors of Ref. 1 [pp. 4 12] never explicitly state what approximations are used for
r; and r, but they apparently follow the work of Ref. 10, which employs the approximations
r - (1/2)sinq and r + (I/2)singq, respectively. The geometrical significance of this approximation
can be understood by consulting Fig. 2 and observing that I; = (I/2)sinq is the distance of Py
and % from the line through O’ perpendicular to T. Hence r; and r» are approximated by their
projections onto the line through O and O,,. Although it cannot be stated with absolute ceitainty,
it is likely that their approximation is related to the farficld assumption of parallel lines: the
two triads of line segments that connect P, to O', Py, P» and O to the same three points are
approximately parallel. As a final comment, the selection of expressions to represent Argy and
AL, is disturbing because the choice is independent of . According to the graphical depiction of
Ref. 1 [Fig- 1.3, p. 8], Aroy and AL,y are the radial and perpendicular components of the vector
error 5. Thus they must depend on the angular error & in the same manner that Eqs. (20(c)),
(20(d)), (21(c)), and (21(d)) do, which is in opposition to the analytical definitions attributed to
them by Eqs. (25(b)) and (25(c)). Consequently, the respective differences among Ar, AL, p and
Aroy, Alrop, [(Aros)* + (A Les )]/ will be examined more closely.

Because they are concerned with an accurate characterization of the range and angular errors,
the three approximations (%r,” ry, r2) that Ref. 1 makes are important. In essence, they introduce
an intrinsic error at the outset to all subsequent equations. To ascertain the gcometrical effect of
substituting r, for 7, solve Eq.(10(b)) for r to obtain

arz-p
—_— 27
Ar2 - Psin® 0’ (27)

Clearly, r is a function of the target orientation () to the radar and the extent (1) of the target

relative to the average range (r;) of the two scatterers. Since the numerator of the radicand is less

than the denominator, r < r,. Hence, as indicated in Fig. 2, O, is farther away from O than O'.

More importantly, the radicand varies between /1 - (I2)/(#r2) and 1 for any value of 6. Hence

the approximation of r by r, is only as good as the approximation of 1 by /1 - (F)/f(4r2).
Substituting g = 5 — 0 into Eqs. (25) vields

, lcost |
tar = r T - .23
b 2r, 33+ 1+ 259 cos[(2el/c)sinb]’ (25(a))
Isind -3
Argy = - 0 . 25(b
Tob 2 23+ 1+ 23 cos|(2l/c)sin 0] (256D
AlLgs =l cos0— -z (25(c))

=3 + 1+ 239 cos{(2l/c)sin ]

Upon identifying r with r, in Eqs. (28), Eq. (25(a)) is identical to Eq. (21(a)) when & - & = 0;
hotwever,

-1

{Ar; —-r(l -~ cos:_:‘x.)} and {Al.; - rsiné,} (29)

2cosdy

2sindy
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ratner thar Ary and AL; agree with Ar,, and ALg. \In light of the preceding discussion, the
disagreements between Ar,, and Ar, and AL, and AL; are not unexpected. In addition, Eq.
(24{a)) is equivalent to Ref. 3 [Eq. (3)] with the identification of rtan @, 8, — 6; — 9, I, 8, and z
to E, ¢+ Lsin, L, 1, and a. Lastly, observe that the only effect of changing the range of 6 from
[7/2,37/2) to [0,7/2) U [37/2,27) is to change the sign for each of Eqgs. (28).

5. EXAMPLES

For very small 7, the first-order approximations are very good; however, these results may not
be accurate enough for all situations of interest. In addition, it is not clear analytically how good
the approximations of Ref. 1 are. Therefore a comparison between the exact and approximate
representations of the range and angular errors is now undertaken by considering two examples for
29 = 0.5 and for a carrier frequency of 10 GHz. To represent a large aircraft, the scattering centers
are separated by 50 m. Hence, for an aircraft that is landing or one that is 200 nmi from the radar,
the respective s are 0.05 and 0.00025. The examples are treated in that order.

Figures 3(a) tarough 3(c) indicate that the absolute value of the angular errors of Egs. (20(a)),
(24(a)), and (28(a)) can get up to 0.07 rad (4.0°), which is not insignificant. In fact, the approxi-
mations are nearly equal since their difference lies in the interval [-0.00003,0.00003] rad (Fig. 3(b)).
The difference between ¢,; and ¢ (hence between ¢; and ¢) fluctuates between -0.06 and 0.06 rad
(Fig. 3(c)). Since the differences, ¢ — @o5 and ¢ — ¢y, can be as large as the actual angular error,
neither approximation is good for all ranges of 6.

In terms of the radial range error, Fig. 4(a) shows that |[Ar| can be 150 m, which is three times
the separation between the scattering centers. Since the ratio |Ar/Ar| is often greater than 1 and
can be as large as 15 (Fig. 4(b)), |Arys| could be a mere 10 m, one-fifteenth the actual radial error.
Clearly Ar,, is not a good measure of this error and is particularly bad near § equal 0, 7, and 27,
where the graph of |Ar/Ar.| appears to blow up. In contrast, Ar; is a better approximation of
Ar (Fig. 4(c)) roughly by a factor of two for the entire range of 8; but in small intervals about = /2
and 37 /2, the approximation is excellent.

Figure 5 provides a comparison of the various transverse errors. The absolute value of the
actual transverse error can reach 65 m (Fig 5(a)), and |AL/ALg| can be as high as 4 (Fig. 5(b)).
Therefore AL,y is not a good estimate of this error. However AL, is an even poorer approximation
of AL (Fig. 5(c)) since ALy =~ 2A Lop, € ccept for 8 near 0, 7 /2, 7, 37/2, and 27, where AL; is a
very good estimate of AL.

Since |A7/A7r,| and [AL/ALgp| are as large as 15 and 4, respectively, and the maximum of
p is 150 m (Fig. 6(a)), one expects the maximum of p/[(Ares)? + (ALos)?]t/? to have an upper
bound of 150/1/241 =~ 9.66. This expectation is verified by Fig. 6(b), where the maximum value is
nearly 7. Therefore [(Arop)? + (ALs)?)'/? is a poor measure of p. Similarly, p; is a poor estimate
of p except for values of  centered about 0, /2, 7, 37/2, and 27 (Fig. 6(c)).

The preceding example demonstrates that the first-order approximations of Eqs.(24) and the
expressions of Ref. 1 can be poor representations of the angular, radial range, and transverse range
errors. In such instances, one should rely on the exact errors (Eqs.(20)).

Comparisons of the errors for the second example (y = 0.00025) are displayed in Figs. 7
through 10. The range errors (AL, Ar, and p) have essentially the same form and magnitude
as the preceding example, and the angular error ¢ has the same form but is 200 times smaller.
However, the behavior of the approximations relative to the errors is significantly different; for
example, the symmetry about § = 7 may be absent (Figs. 7(c), 8(b), 9(b), 10(c)). In addition,
excursions of the first-order approximations from the actual errors are much smaller than those
of the first example, and the analytical relationships among the exact errors and both sets of
approximations are apparent for small values of 4. In particular, ¢ = ¢op =~ @1, Ar >~ Ary > 2A74,

10
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and AL ~ ALy ~ ALy /2; and Ar, AL, p, and ¢ respectively lie in [-150 m,150 m], [-75 m,75 m],
[0,150 m], and {-0.5 mrad,0.5 mrad] (see Figs. 7(a) through 10(a)).

Both approximations to the angular error ¢ are excellent. Since ¢ and @, are indistinguishable
up to the twelfth decimal, only ¢ — ¢, is sketched (Fig. 7(c)). This difference gets no larger than
3 x 10~7 rad. The first-order approximations of AL, Ar, and p are also very good except possibly
at 8 equal 0, 7, and 27 (Figs. 8(c), 9(c), 10(c)). In contrast, the transverse and radial errors of
Ref. 1 apparently converge to multiples of the actual errors except possibly near 0, 7, and 2« (Figs.
8(b), 9(b)); while \/ArZ, + ALZ, smoothly oscillates between one-half and twice the actual error
p (Fig. 10(b)).

11
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6. LIMITS OF THE RATIO OF THE RANGE ERRORS

To address the issue of whether the approximations converge to the transverse and radial
errors, analytical expressions for Ar/Ary, Ar/Ag, AL/ALy, and AL/AL,, are now considered
for §; — 6, = 0. Evaluation of the limits of these quotients as 4 approaches zero for fixed 8 is treated
first. Then the limits as 8 approaches 0, =, and 2x for fixed 7 are evaluated because the ratios
may be zero or may not exist. The behavior at these specific 8 for small y are then determined by
taking a second limit as y approaches zero.

Equations (20), (23), (24), and (28) yield

Ar
AT]

L

Allob

Ar
Aty

—_— i 1 72 2 4 . 73 . 2 4
= = +-—8—cos 0+0(7")+ 7s1n0—-8—sm0cos 6+ O(7*)

X

1 e 20
23 + 1+ 220 cos[(2wr/6)(75i“0 ~ Fsinfcos?0+ 0(74))] }

1-2%
+ {1 + 7sinf — }, (30(a))

z3 + 14 2z cos [(2wr7/c) sin 0]

2 3
= {1 - cosq{)(l + —/8—-cos"’0+0("/4)+ [7sin0— %sin&cosgf)-i- 0(74)]

l—;:;,'2 )}
23 + 14 229 cos|(2wr/c)|ysing — 2 sinfcos2 6 + O 7
0 8

+{1—cos¢>1 <1+7sin0 -2 )}, (30(b))
z3 4+ 1 4 229 cos [(2wr7/c) sin 0]

2 3
= sin ¢{1 + 18— cos’ 04+ O(v*) + [7sin 60— 18- sin 0 cos® 9 + O('y")]

X l—zg }
22 + 1+ 229 cos|(2wr/c)(7sind — 2L sin 0 cos? § + O(y*
0 8

+ {7cos() L- % ] }, (30(¢))

z3 + 1 4 2zp cos [(2wr‘y/c) sind

2 3
= {1 - cosrf:(l + %COS20 +0(7") + [’)’Sin0 - 18—3i110c0520+ O(‘)’")]

22 4 1 4 229 cos|(2wr/c)(7sin0 — L sin O cos? 0 + O(7*
0 8

vsin 0 1 -z}
+ {-’ —— d ' } (30(d))
z5 k1422 cos[(?wr'y/c) sin ()]
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Observe that

. . . tand _
'lvl-rortl)qS =0, '1’1_% $1=0, '}rl-% tang; L (31)

and consequently ing
sin

lim —?- = lim

=1. 32
¥=0 ¢ v—0sing; ! (32)
From Egs. (30(a)), (30(b)), (31), and (32), it follows that
. AL . Ar
51_101}) N7 1 and ’51_1’1})A—7_1 =1. (33)

To determine the limit of Eq. (30(d)), an interim approximation of Ar/Ar,, is now obtained.
For small v, cos¢ may be replaced by unity. In addition, all terms with v raised to a power
exceeding one are eliminated. Thus, Eq. (30(d)) becomes

~dr—< 7+ rysind -
Atop 22 + 1+ 2z cos [(2wr7/ ¢)(sin 9)]

. {_r'ysin() 1-23 }
. 2 22 +1+2z cos[(2wr7/c) sin 0] ,

(34)

from which
. Ar
lim
7=0 Arop

=2. (35)
Next consider

AL sing 2§ + 1+ 229 cos [(2wr7/c) sin 0]
ALoy ~ 7ycos® -2

W 4 . 7 2 4
X 1+§cos 0+0(x")+ [7sm0—?sm6’cos 8+ O(y )]

_ 2
X cosf 1= % }. (36)
25 + 14 2zpcos [(Qwry/c) sin 0]

The bracketed expression to the right of the first times sign goes to unity as 7 — 0; so it remains
to ascertain the behavior of the term involving ¢. In particular, for small 4 (and hence small @),
sin @ is replaced by tan ¢, Eq. (20(a)) is applied, and the limit is evaluated to obtain

sing z8 + 1 4 229 cos [(2wr1/c) sin 0] i
li =i = -.
Bl AlLg 'lvl-% Ycos @ 1 -2z 2

L

(37)

The behavior of the quotients in Eqs. (30) for 8 equal to 0, =, and 27 are now determined by
evaluating .he limits as 6 approaches these values and taking the resultant limits, if possible, as 7
approaches zero.

For fixed v,

ar _ VU EEER-VI+ T

lim

, (38)

§~0,7.27 Ar - 2 {1—30)2
! \/l+1f(|+::) -1




MOKOLE

for z # 1, which leads to

2
. Ar _ 1+Zo
k%{&ggwﬁhj}_l_(l—m)' (39)

Clearly this expression has an infinite discontinuity at 2o = 1. Thus as zp approaches unity, the
limit of the absolute value of Ar/Ar; tends to positive infinity.

Letting zo = 0.5in Eq. (39) yields 8 for the absolute value of this double limit. Upon inspection
of Figs. 4(c) and 8(c), one can see that the analytical and graphical results are in agreement for 6
equal 0, 7, and 27.

In comparison, the limits of Ar/Ar,, as 6 approaches 0, 7, and 27 do not exist since

1+ 2%
lim Arg =0 and lim Ar=7{1- ; (40)
8—0,7,2 §—0,7 27 1+ foid (1~20)2
4 (1 :o;§
but in the extended real numbers,
Ar
9-.15?,2,: Arop| Foo. (41)

This is exhibited in Figs. 4(b) and 8(b), where the curves have sharp jumps at 8 equal 0, =, and 27.

These jumps are similar to those of Figs. 4(c) and 8(c), except that in the present case, instead of

finite values for the functic .t these 8, the functions are undefined and have vertical asymptotes.
The expressions for the :atios of the transverse errors are a bit simpler. More specifically,

ln AL l+ﬁ and 1 AL 1

where Eqs. (42) are valid for all positive z5. Hence

AL AL 1
1:’—'0‘}){9-.153?2—?1,—1} =1 and —171.3}){5_.13322: ALob} T2 (43)

In general, as 7 decreases to zero, all errors become smoother, the first-order approximations
approach the actual errors, and Arg, and AL, approach Ar/2 and 2AL, respectively, except near
0 equal to 0, &, and 2a. Hence AL, is eventually an upper bound for AL so that the transverse
error is less than ALg. On the other hand, A7, is double the actual radial range error for very
small 5. Therefore Ary, and ALy are not good estimates Ar and AL for small 4 and @ not near
0, 7. and 2=; however, the relationships among them are precisely known.

All of these analyticaliy derived conclusions about the behavior of the two sets of approxima-
tions for small 4 can be seen in Figs. 7 through 10. The first-order approximation to the transverse
range error A is excellent (Fig. 9(c), Eq. (33)), even for 8 near 0, 7, 27 (Eq. (43)). The radial
range error Ary closely approximates Ar (Fig. 8(c)) except near 0, 7, 27, where the ratio increases
to a finite, nonzero value in accordance with Eqs. (33) and (39). Lastly, the predicted relationships
(Eqs. (35), (37), (41), (42)) between the approximations of Ref. 1 and the exact range errors are
displayed in Figs. 8(b) and 9(b).

Generally it turns out that the first-order approximations of the range errors are excellent for
v € [0,0.000001], are good for ¥ € (0.000001,0.0003], are fair for 4 € (0.0003,0.005], and are poor
for ¥ € (0.005,1.0]. Appropriate multiples of the range estimates of Ref. 1 behave similarly. Also
both approximations to the angular error are accurate for ¥ smaller than 0.005.

(42)
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7. SUMMARY

Based on the assumption that the measured centroid of a two-point target is determined froin
the phase 3°s of the composite signal of the individual returns, exact expressions for the angular,
transverse range, radial range, and vector errors have been derived. These errors depend on six
parameters: the transmission frequency (27 f = w); the range to the centroid of the two scatterers
(); the difference between the phases induced by each scatterer (8; - 6;); the ratio of the amplitudes
of the individual scatterers (zg); the angle between the line segment from the centroid to the radar
and the perpendicular bisector of the line segment connecting the scatterers (8); and the ratio of
the distance between the scatterers to the centroidal range (7).

Examples are analyzed for specific choices of f, zp, and &, - §; (10 GHz, 0.5, and 0 rad). Two
conclusions can be drawn from this analysis. First, the magnitude of the vector error the distance
between the measured and actual target centroids can be large even for small values of 7. In one
example where 7 = 0.00025, this error is three times the distance between the scatterers for some
target orient..ions, which means the measured target location could be off by three body lengths.
Consequently, the measured location can be well away from the actual target.

Second, approximate formulae for the angular and range errors, such as the far ficld approxima
tion to the geometry, should not be used in place of exact expressions without proper consideration
of the errors incurred by their use. It has been demonstrated that such approximations can diverge
substantially from the actual errors. In particular, the formulac of Ref. 1 may not be adequate
for representing the radial and transverse range errors when 9 > 0.00025, since these estimates
of the errors are twice and one half the real values, respectively, for small 3, while the first-order
approximations derived hercin are inaccurate for 9 in excess of 0.005. Therefore when 3 > 0.005,
exact expressions or more accurate approximations for the errors must be used if one wishes to
get an accurate assessment of the range and angular errors. On the other hand, for 7 < 0.005,
the first-order approximations are valid. Even the radial and transverse range errors of Ref. 1
can be used, provided their relationships to the actual range errors are kept in mind. Although
a three dimensional analysis both for two point and .V point targets would be more real ;lic, this
two-dimensional analysis provides additional insight into the glint problem.

This analysis indicates that the glint phenomena may be caased in part by the inherent error
in the positional measurement. If this error is deemed significant and is attributable to a theoretical
formulation that resulted in the equations specifying position, then the theury should be revamped
to account for this. Even if the existing theory is correct, an explanation of this error should be
sought. The situation is complicated further by the introduction of an additional crror through
approximations to the theoretical expressions for the position. Whether the combination of the
inherent and approaimation induced crrors reduces or increases the measured positional error is
unclear. In terms of appiication to a radar system, crrors of the magnitudes demonstrated herein
may be significant. TFor example, a 1° angular error for an incoming object could be very important.
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